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ABSTRACT

Adaptive filters are applicable to many signal processing
tasks including acoustic echo cancellation, beamforming,
and more. Adaptive filters are typically controlled using al-
gorithms such as least-mean squares (LMS), recursive least
squares (RLS), or Kalman filter updates. Such models are
often applied in the frequency domain, assume frequency
independent processing, and do not exploit higher-order
frequency dependencies, for simplicity. Recent work on
meta-adaptive filters, however, has shown that we can con-
trol filter adaptation using neural networks without manual
derivation, motivating new work to exploit such information.
In this work, we present higher-order meta-adaptive filters,
a key improvement to meta-adaptive filters that incorporates
higher-order frequency dependencies. We demonstrate our
approach on acoustic echo cancellation and develop a family
of filters that yield multi-dB improvements over competitive
baselines, and are at least an order-of-magnitude less com-
plex. Moreover, we show our improvements hold with or
without a downstream speech enhancer.

Index Terms— adaptive filters, acoustic echo cancella-
tion, meta-learning, learning-to-learn, online optimization

1. INTRODUCTION

Adaptive filters (AFs) are broadly useful for numerous au-
dio tasks such as acoustic echo cancellation, equalization,
and multi-channel denoising or beamforming. AFs are
typically defined as linear filters with time-varying filter
weights that are computed by solving an online optimization
problem via additive update rules. Example hand-derived
AF algorithms include least-mean squares (LMS) [1], nor-
malized LMS (NLMS), recursive least squares (RLS), and
Kalman filters (KF) [2, 3, 4, 5, 6]. Early AFs used time-
domain filters [1], but were quickly replaced with (multi-)
block-frequency domain filters [7, 8, 4], which often assume
frequency-independent processing for simplicity.

When we survey further improvements to AFs with a fo-
cus on acoustic echo cancellation (AEC) [9, 10], numerous
improvements have been proposed. For example, near-end
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Fig. 1. Frequency dependency structures for meta-adaptive
filters. (Left) Diagonal. (Center) Block. (Right) Banded.

signal models have been proposed for handling simultaneous
far-end and near-end activity (double-talk) [11, 12, 13] as well
as state-space formulations [14, 15, 16, 17]. A few works [18,
19] also propose to use higher-order frequency dependencies
for AEC AFs, likely motivated by the success of multivari-
ate statistics for source separation [20, 21], but showed varied
performance improvement with increased complexity.

More recent improvements to AFs include data-driven
methods. Such methods include model-based methods [22,
23, 24], which use deep neural networks (DNN) to estimate
signal statistics for existing signal models and model-free
approaches [25, 26]. Of particular interest is Meta-AF [26],
an approach of using meta-learning to learn adaptive filter
update rules from data using neural networks. This approach
was found to outperform several past methods for AEC, but
still only learns frequency-independent update rules. It thus
neglects higher-order frequency dependencies and requires
one forward-pass of a neural network per frequency bin,
making it more computationally complex than desired.

In this work, we present meta-adaptive filters with higher-
order frequency dependencies — a key extension to Meta-
AFs that incorporates higher-order frequency dependencies
into learned update rules as shown in Fig. 1. We demonstrate
our approach on the task of AEC and develop a family of
higher-order adaptive filters. Compared to Meta-AF [25, 26],
we improve AEC performance by multiple decibels using an
order of magnitude less floating point operations (FLOPs).
We also compare against conventional AEC approaches and
find our higher-order Meta-AF significantly outperforms all
tested alternatives. Beyond this, we verify our proposed im-
provements hold with or without a down-stream DNN-based
speech enhancer (SE), showing the practical value of our ap-
proach. For reproducibility, we release our outputs, trained
model weights, and code1.
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2. BACKGROUND

2.1. Adaptive filters

We define an AF as a time-varying linear filtering procedure
hθ[τ ], with parameters θ[τ ] computed by solving

θ̂[τ ] = arg min
θ[τ ]
L(hθ[τ ], · · · ) (1)

via an additive update rule

θ[τ + 1] = θ[τ ] + ∆[τ ], (2)

where signals are indexed by τ , the AF loss L(· · · ) is a func-
tion of one or more signals, ∆[τ ] is the AF update, and θ[τ ]
are filter parameters.

We use frequency-domain AFs with overlap-save (OLS)
filtering denoted by hθ[τ ](·) with frequency coefficients
θ[τ ] = w[τ ] ∈ CK . We represent time-domain signals
via an underline and frequency-domain without. In matrix
notation, the OLS time-domain output y[τ ] for an R sample
hop is computed via y[τ ] = Zyy[τ ] ∈ RR, where y[τ ] =

diag(u[τ ])Zww[τ ] ∈ CK , u[τ ] is the input signal, Zw =
FKT>RTRF−1K ∈ CK×K , Zy = T̄RF−1K ∈ CR×K are anti-
aliasing matrices, FK is the K-point discrete Fourier trans-
form matrix, TR = [IK−R,0K−R×R] ∈ RK−R×K trims the
last R samples from a vector and T̄R = [0K−R×R, IK−R] ∈
RK−R×K trims the first R samples. We set R = K/2. Suc-
cinctly, y[τ ] = hθ[τ ](u[τ ]) and e[τ ] = d[τ ] − y[τ ] where d
is the desired response, and e is the error.

2.2. Meta-adaptive filters

Recent work has shown that AF update rules can be learned
from data using neural networks [26]. To do so, a meta-
learning formulation is used instead of (1), resulting in

φ̂ = arg min
φ
ED[ LM ( gφ,L(hθ, · · · ) ) ], (3)

whereLM ( gφ,L(hθ, · · · ) ) is the meta-loss that is a function
of the AF loss, filter or optimizee hθ[τ ](·), optimizer neural
network gφ(·), andED represents expectation over datasetD.
Generally, this results in the update θ[τ + 1] = θ[τ ] + gφ(·),
where gφ(·) is recurrent network parameterized by φ, ap-
plied per frequency k, and with configuration-dependent in-
puts. For a stateful optimizer, the update rules are

(∆k[τ ],ψk[τ + 1]) = gφ(ξk[τ ],ψk[τ ]) (4)
θk[τ + 1] = θk[τ ] + ∆k[τ ], (5)

where we index across K frequencies using subscript k. The
input is ξk[τ ] = [∇k[τ ],uk[τ ],dk[τ ], ek[τ ],yk[τ ]] and the in-
ternal state ψk[τ ]. Here, uk[τ ] is the filter input, yk[τ ] is the
filter output, dk[τ ] is the desired response, ek[τ ] is the error,
and ∇k[τ ] are autodiff gradients of the AF loss w.r.t. θk[τ ].
The outputs are AF update ∆k[τ ] and a new internal state.

To learn network parameters φ, we use backpropagation-
through-time and a meta-optimizer (e.g. Adam) over L steps
to update φ until convergence. For our meta-loss, we use the
frame-accumulated meta-loss [26]

LM (· · · ) = lnE[‖d̄[τ ]− ȳ[τ ]‖2], (6)

which was found to be superior to alternatives, where d̄[τ ] =
cat(d[τ ], · · · ,d[τ+L−1]) ∈ RRL, ȳ[τ ] = cat(y[τ ], · · · ,y[τ+

L − 1]) ∈ RRL, and cat is the concatenation operator. For a
full review and example code, please see [26].

3. HIGHER-ORDER META-ADAPTIVE FILTERS

3.1. Overview

We build on Meta-AF [26] and present a simple, but powerful
extension to incorporate higher-order frequency dependencies
when estimating filter updates. To learn frequency dependen-
cies, we introduce learnable downsampling S and upsampling
U layers before and after our optimizer network. The down-
sampling layer projects the per-frequency inputs ξk[τ ] into C
groups, where C ≤ K. We run the optimizer gφ indepen-
dently per coupled group c instead of per frequency k and use
the upsampling layer to expand the group update ∆c[τ ] to a
per-frequency update. Formally, we modify (4) and (5) to be

(∆c[τ ],ψc[τ + 1]) = gφ( S(ξ[τ ])c , ψc[τ ] ) (7)
θk[τ + 1] = θk[τ ] + U(∆c)k, (8)

where the modified network state ψc[τ + 1] stores state
per group. By applying gφ per group of frequencies, we can
model interactions within a group and share state/computation
within groups, significantly reducing computational cost.
Each shaded square/rectangle in Fig. 1 represents a group.

3.2. Dependency structures

Our approach allows for arbitrary frequency dependencies by
imposing structure into the up-/down- sampling layers. We
focus on three different forms of structure as shown in Fig. 1,
including diagonal (left), block (middle), and banded (right).
On an intuitive level, each coupling structures implies a differ-
ent inter-frequency covariance matrix. Diagonal corresponds
to frequency independent processing, while block/banded
model higher order relationships and allow information shar-
ing across frequency groups. Larger groups model more
interactions, but at the cost of sharing a single H dimensional
state. Thus, there is a trade-off between group size, state
size, performance, and efficiency. We describe three potential
dependency structures below.

Diagonal: For diagonal frequency dependencies, we set
S and U to be dense layers operating identically on each fre-
quency. We use this configuration as a baseline as it defaults
to [26]. The complexity of gφ is O(H2), with K executions
per frame resulting in a total complexity of O(KH2).



Block: For block frequency dependencies, we reshape
each of theK per-frequency network inputs ξk[τ ] = [∇k[τ ],uk[τ ],dk[τ ], ek[τ ],yk[τ ]] ∈
C5 intoC per-group features ξc[τ ] ∈ C5B or a C×5B matrix,
where C = K/B and B is the group size.

We then apply a dense layer on the latter dimension to
produce a C×H output and apply the optimizer separately to
each of the C columns. Thus, we impose a non-overlapping
block-group structure and enable information and computa-
tion sharing within groups. This is reminiscent of sub-band
processing [16]. The cost of gφ is O(H2), the up/down sam-
pling layers cost O(BH), and the number of executions per
frame is K

B , for a total of O(KB (H2 + BH)).
Banded: For banded frequency dependencies, we modify

the block-reshape operation described above to return over-
lapping groups of B frequencies, and retain all other block
dependency operations. By doing so, we enable information
and computation sharing across overlapping groups of fre-
quencies and better model adjacent frequency relationships.
By increasing and decreasing the overlap, we modulate the
number of adjacent frequencies. In this work, we set the over-
lap to B

2 . This style of dependencies was explored in past
work [18, 19]. The complexity of gφ is O(H2), the up/down
sampling layers cost O(BH), and the number of executions
per frame is 2KB for a total of O(KB (H2 + BH)).

Practically, we implement all dependency structures using
standard deep learning operations. We implement the down-
sampling layer with a 1-D convolution and the upsampling
layer with a transposed convolution. We configure different
strategies with different filter sizes (B), and stride sizes. A fil-
ter size of B = 1 with stride one implements diagonal, a filter
size where B > 1 with stride of B implements block, and a
filter size of B > 1 and stride of B/2 implements banded.

4. EXPERIMENTAL DESIGN

We evaluate our method on AEC with double-talk, near/far
-end noise, and nonlinearities. We implement an AEC Fig. 2
with an optional DNN speech enhancer (DNN-SE), mϕ(·)
and benchmark via objective, perceptual, and speed metrics.

4.1. Acoustic echo cancellation problem formulation

To perform AEC, we fit a linear frequency-domain finite-
impulse response filter to mimic an unknown echo path,
output e[τ ] via the OLS filter hθ[τ ](·) (Section 2.1), and
use an AF loss of L(·) = E[‖e[τ ]‖2]. The signal-model is
d[t] = σ(u[t])∗w +n[t] + s[t] where n is noise, s is speech,
and σ(·) is a loudspeaker nonlinearity.

4.2. Configurations and baselines

We compare block-frequency NLMS, RLS, KF [14], and di-
agonalized Meta-AF [26] to higher-order Meta-AF with block
and banded frequency dependency structures.

Fig. 2. Higher-order Meta-AF for AEC with a DNN speech
enhancer. The shaded box represents an unknown system.

4.3. Model details

For all our higher-order dependency configurations, we set
gφ to be a stack of two complex-valued gated recurrent
units (GRU) with hidden size H . For all dependency strate-
gies, the output size of S is H , and the input size of U
is H . We perform magnitude log-scaling to the inputs via
ln(1 + |ξ|)ej∠ξ as in [26]. For our enhancer mϕ(e[τ ],u[τ ]),
we follow [27] and use a 2-layer GRU with log-magnitude
short-time Fourier transforms of the far-end, u[τ ] and the
AEC output e[τ ] as inputs with output ŝ[τ ] = e[τ ] �M[τ ]
using magnitude mask, M[τ ] ∈ RK bounded with a Sigmoid
function. � is the hadamard product. mϕ(·) is trained to re-
move noise and residual echo. We use JAX [28], Haiku [29],
and the Meta-AF python package [26].

4.4. Datasets

We use the synthetic portion of the Microsoft AEC Chal-
lenge [27]. It contains 10000 pairs of 10 second scenes at
16 KHz, so we use 9000, 500, and 500 for training, validation,
and test. Each scene has double-talk, and optional near-end
noise and loud-speaker nonlinearities. Double-talk occurs in
the middle of every scene, so we apply a random circular shift.

4.5. Evaluation metrics

We evaluate AEC performance using segmental echo return
loss enhancement (SERLE) [30], and short-time objective
intelligibility (STOI) [31]. When evaluating after the en-
hancer, we use STOI, and scale-invariant signal-to-distortion
ratio (SI-SDR) [32]. With du[τ ] = σ(u[t]) ∗w, SERLE is∑

τ

10

N
log10

(
‖du[τ ]‖2 / (‖du[τ ]− y[τ ]‖2)

)
, (9)

N is the number of frames, and we discard silent frames.
SI-SDR uses a = (ŝ>s)/‖s‖ and is SI-SDR(s, ŝ) = 10 ·
log10(‖as‖2/‖as − ŝ‖2). To empirically evaluate speed, we
use FLOPS and real-time-factor (RTF) (computation/time) to
compliment our Big-O analysis. While there is debate on the
utility of FLOPs for deep learning, we believe the measure is
relevant for real-time low-power devices. RTF is also useful,
but highly implementation and environment dependent.
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Fig. 3. Higher-order frequency dependency comparison. Block and banded improve SERLE while reducing FLOPS.

4.6. Training details

For AEC, we use a 4096 pt. window and a 2048 pt. hop.
We train Meta-AF models using (6) and the training scheme
from [26] with Adam (λ = 10−4). We train the DNN-SE us-
ing a 512 pt. window, 256 pt. hop, Adam (λ = 6 ·10−4), with
AEC-processed inputs and clean speech as the target using
mean-squared error on the magnitude STFT. We set L = 20
for Meta-AF training and L = 150 for DNN-SE training. We
use gradient clipping, λ2 if val. performance does not improve
for 5 epochs, and stop training after 16 with no improvement.

5. RESULTS

5.1. Higher-order dependencies comparison

We show the effect of different higher-order dependencies on
performance (left) and complexity (right) in Fig. 3. We com-
pare diagonal, block, and banded dependencies across GRU
state sizes ofH = {16, 32, 64}. Block and banded optimizers
outperform their diagonal counterparts and reduce complex-
ity. For diagonal optimizers, scaling H has little impact on
performance and increases complexity. However, for higher-
order optimizers, scaling H improves performance. For the
higher-order optimizers, larger groups force more updates to
be processed by a single GRU. For small groups this improves
performance and reduces complexity. Intuitively, neighbor-
ing frequencies are related and grouping them allows the op-
timizer to exploit such relationships. All frequencies within a
group share the same hidden state, which reduces the number
of states, which reduces complexity. Overall, banded has the
best SERLE but block is more efficient.

5.2. Effect on downstream performance

We show the effect of AEC on speech enhancement perfor-
mance in Fig. 4. In solid colors, we show performance of the
AEC and in striped colors we show the performance of AEC
along with a DNN-SE. We show three Meta-AEC models all
withH = 32: diagonal, banded with group 9 and banded with
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Fig. 4. Effect of AEC on DNN-SE performance. Block Meta-
AEC performs best before and after the DNN-SE.

group 3. Banded-3 performs best and beats KF by 3.21 dB SI-
SDR and .038 STOI. The less complex Banded-9 performs
similarly and both beat diagonal Meta-AEC by > 1 dB SI-
SDR and > .01 STOI. The trend holds when paired with a
DNN-SE. Banded-9 surpasses KF by 2.2 dB SI-SDR and .018
STOI and diagonal by 1.3 dB SI-SDR and .01 STOI. This
demonstrates that modeling higher-order dependencies trans-
lates to better downstream performance and highlights that
AF advances can improve overall system performance. The
raw mixture scores −1.15 dB SI-SDR and 0.78 STOI. Oracle
AEC and DNN-SE score 32.27 dB SI-SDR and 0.97 STOI.

All AECs run in real-time on a single CPU core with RTFs
of: 0.12 for KF, 0.15 for Diag., 0.18 for Banded-3, and 0.13
for Banded-9. Banded-9 is as fast as KF, and outperforms
Diag. Meta-AEC models have 14K complex parameters.

6. CONCLUSION

In this work, we propose a method for meta-learning adaptive
filter update rules with higher order frequency dependencies.
We evaluated a family of frequency dependency structures
on a challenging acoustic echo cancellation task and found
that our approach yields high performing and efficient up-
date rules that run in real-time. We compared to a variety of
competitive conventional and meta-learned AF baselines and
show that our approach yields multi-dB improvements while
being faster and less complex. Finally, we verify that our ad-
vances hold with and without a downstream speech enhancer.
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