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ABSTRACT

Adaptive filters (AFs) are vital for enhancing the performance of
downstream tasks, such as speech recognition, sound event detec-
tion, and keyword spotting. However, traditional AF design priori-
tizes isolated signal-level objectives, often overlooking downstream
task performance. This can lead to suboptimal performance. Recent
research has leveraged meta-learning to automatically learn AF up-
date rules from data, alleviating the need for manual tuning when
using simple signal-level objectives. This paper improves the Meta-
AF [1] framework by expanding it to support end-to-end training
for arbitrary downstream tasks. We focus on classification tasks,
where we introduce a novel training methodology that harnesses
self-supervision and classifier feedback. We evaluate our approach
on the combined task of acoustic echo cancellation and keyword
spotting. Our findings demonstrate consistent performance improve-
ments with both pre-trained and joint-trained keyword spotting mod-
els across synthetic and real playback. Notably, these improvements
come without requiring additional tuning, increased inference-time
complexity, or reliance on oracle signal-level training data.

Index Terms— adaptive filtering, keyword spotting, learning to
learn, meta-learning, acoustic echo cancellation

1. INTRODUCTION

Adaptive filters (AFs) are essential for many smart systems, includ-
ing automatic speech recognition, sound event detection, and key-
word spotting [2]. In these applications, AFs serve as key pre-
processing steps and are designed to enhance the performance of
their downstream components by removing noise, reverberation, and
other distortions from their input signals. Traditionally, AFs have
been hand-tuned for optimizing signal-level objectives, such as min-
imizing mean-squared error, using techniques like recursive least
squares [3, 4, 5]. However, recent advancements in deep learn-
ing have introduced methods for controlling pre-built AF update
rules [6, 7, 8], or for learning entirely new update rules from scratch
[9, 1]. Existing techniques often do not take into account the down-
stream task and may not lead to the best performance in practice.

Several pioneering works demonstrated that incorporating
downstream task knowledge into AF control, through manual uni-
fication schemes, could enhance performance [10, 11, 12]. Such im-
provements necessitate a complex, task/model-dependent derivation
process, as well as feedback from the downstream model to the AF at
test time. This line of work inspired many DNN-based approaches.
These DNN approaches can be broadly grouped into two categories.
The first explicitly decouples preprocessing and downstream opera-
tions, treating them as sequential components within a larger DNN
pipeline [13, 14, 2, 15]. This is highly modular but typically requires
more complex training schemes and engineering overhead [16]. The

1https://jmcasebeer.github.io/metaaf/kws-af

Fig. 1: The echo canceller hθ[τ ], controlled by optimizer gϕ, cancels
own-playback and passes its output to keyword classifier mφ. The
optimizer is trained end-to-end with the classifier, improving perfor-
mance without the need for additional tuning.

second takes an end-to-end strategy, trading modularity for simpler
design and training schemes [17, 18, 19, 20].

In this paper, we propose a novel framework that bridges
these two DNN-based approaches, allowing for the incorporation
of downstream classification task knowledge into AFs without task-
dependent design or test-time feedback. We propose a modi-
fied training scheme for the Meta-AF framework [1], which we
call classification-trained Meta-AF (CT-Meta-AF). CT-Meta-AF is
unique in that it does not require oracle signal-level supervision such
as impulse responses or clean speech. Instead, it leverages a combi-
nation of signal-level self-supervision and automatic classifier feed-
back. This eliminates the need for manual task/model dependent
tuning and is directly compatible with both off-the-shelf and end-to-
end trained downstream models.

To evaluate our framework, we apply it to two fundamental
tasks for smart devices: acoustic echo cancellation (AEC) and key-
word spotting (KWS). AEC is a critical component of nearly all de-
vices with own-playback, and KWS is essential for enabling hands-
free operation of smart devices. We construct a challenging joint
AEC and KWS dataset by combining two existing datasets [21, 22],
and benchmark CT-Meta-AFs against Meta-AF [23] and a Kalman
Filter [24], two state-of-the-art approaches for signal-level objec-
tives. Results show that CT-Meta-AF achieves consistent perfor-
mance gains across both synthetic and real playback scenarios, mul-
tiple playback lengths, various task/model configurations, and both
pre-trained and joint-trained keyword spotting models.

The contributions of this work are: 1) A versatile framework
for seamlessly integrating downstream task knowledge into AF up-
date rules, applicable to various AFs and tasks, 2) Task-specific in-
sights for AEC and KWS, yielding models that surpass previous ap-
proaches, 3) A comprehensive empirical exploration of incorporat-
ing downstream task knowledge across different classifier models,
employing various training schemes, and evaluating on both real-
world and synthetic data. We also release all code and weights1.
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2. META-AF BACKGROUND

2.1. Adaptive Filters

In this work, an AF is a time-varying filtering procedure with pa-
rameters that are controlled by an online optimization rule in order
to solve some objective function. We denote the filter as hθ[τ ], pa-
rameterized by θ[τ ], and updated using an additive rule,

θ[τ + 1] = θ[τ ] +∆[τ ]. (1)

Time-varying updates ∆[τ ] govern filter adaptation, and are pro-
duced by an update rule gϕ. Conventional AFs are designed to pro-
duce updates which solve a tractable AF loss L(·), which is typically
a function of the AF output and some readily available mixture.

To perform our chosen AF task of AEC, we fit a filter to to re-
move echo caused by own-playback. The time-domain signal model
is d[t] = u[t] ∗ w + n[t] + s[t], where n is noise, s is a key-
word, and w is the transfer function applied to own playback u. The
AF attempts to mimic w via a multi-frame frequency-domain filter
applied using overlap-save [25]. We denote this as hθ[τ ] with fre-
quency coefficients θ[τ ] = ŵ[τ ] ∈ CK×B where K is frequencies,
B is the number of blocks, and blocks advance by K/2 samples.
The output is echo reduced signal e[τ ] = hθ[τ ](d[τ ],u[τ ]).

2.2. Meta-Adaptive Filters

The Meta-AF [1] approach showed that AF control rules could be
entirely learned with a learning-to-learn strategy [26]. Instead of
solving the AF loss L(·) directly, the procedure solves a meta-loss,

ϕ̂ = argmin
ϕ

ED[ LM ( gϕ,L(hθ, · · · ) ) ], (2)

where LM ( gϕ,L(hθ, · · · ) ) is the meta-loss that is a function of the
AF hθ[τ ], optimizer neural network gϕ, and ED represents expecta-
tion over dataset D. The standard setup solves this via an additive
update θ[τ + 1] = θ[τ ] + gϕ(·), where gϕ is a complex valued
DNN parameterized by ϕ, applied per frequency k. Typically, gϕ
has per-frequency state and inputs,

(∆k[τ ],ψk[τ + 1]) = gϕ(ξk[τ ],ψk[τ ]) (3)
θk[τ + 1] = θk[τ ] +∆k[τ ], (4)

where we index across K frequencies using subscript k.
The input is a stack of the frequency-domain filter gradi-
ent, input, target, error, and output respectively: ξk[τ ] =
[∇k[τ ],uk[τ ],dk[τ ], ek[τ ],yk[τ ]]. The outputs are AF update
∆k[τ ] and a new internal state ψk[τ ]. To learn parameters ϕ,
we use backpropagation-through-time and a meta-optimizer (e.g.
Adam) over L optimization steps. We set our meta-loss to the self-
supervised log-mse meta-loss,

LM (ē) = lnE[∥ē[τ ]∥2], (5)

where ē[τ ] = cat(e[τ ], · · · , e[τ + L − 1]) ∈ RRL, and cat is the
concatenation operator. Intuitively, this loss encourages an optimizer
to maximally reduce the energy of the AF output without needing
oracle echo (u ∗w) or oracle speech (s) information.

3. CLASSIFICATION-TRAINED META-AF

In this work, we propose CT-Meta-AF, an extension to the Meta-AF
framework [1]. CT-Meta-AF learns an AF optimizer for downstream

classification tasks in a data-driven manner, without task/model de-
pendent engineering or the need for oracle signals like clean speech.
Specifically, we use an adaptive filter, such as an echo canceller,
whose time-varying parameters θ[τ ] are updated by a meta-learned
update rule gϕ. The goal is to use the processed signals from the
adaptive filter for a downstream classification task, such as keyword
spotting, performed by a model mφ. To this end, we employ an end-
to-end training setup that enables joint optimization of the adaptive
filter, optimizer, and the classification model. Our approach uses
feedback from the classifier during training to learn a custom opti-
mizer, resulting in enhanced performance without requiring explicit
coupling or the need for test-time feedback. This approach is also
suitable for training on real mixtures.

3.1. Overview

To address the downstream objective, we introduce a modification to
the original meta-loss from (5) that incorporates classification feed-
back, which we call LCM . Specifically, LCM consists of two com-
ponents: the classification loss, denoted by LC(c, ĉ), where c is
the true class and ĉ = mφ(·) is the predicted class, and the self-
supervised loss, denoted by LM , as defined in (5). The joint loss,

LCM (ē, c, ĉ) = λ · LC(c, ĉ) + (1− λ) · LM (ē), (6)

uses λ ∈ [0, 1] to control the weighting between classification and
self-supervised losses. This approach implicitly couples the repre-
sentations learned by gϕ and mφ without explicitly sharing their
parameters, using the idea of “task-splitting” [19, 20].

3.2. Pretrained Classifier

When dealing with complex classification tasks, it is common to use
off-the-shelf or pretrained models due to data, compute, or engineer-
ing constraints. In this setting, we assume that the classifier, mφ, is
frozen and not trainable. This leads to a modified (2),

ϕ̂ = argmin
ϕ

ED[ LCM ( mφ, gϕ,L(hθ, · · · ) ) ]. (7)

This equation incorporates mφ without modifying it by using mφ as
an additional loss term. This method allows custom training of the
optimizer for the classifier without the classifier needing to be aware
of the custom preprocessing. It customizes the optimizer to the clas-
sifier, automatically performing the model unification proposed by
Seltzer et al. [10] in a model and task independent fashion.

3.3. Jointly Trained Classifier

When ample data and compute resources are available, joint or end-
to-end training is a powerful approach. This involves training both
the optimizer gϕ and classifier mφ simultaneously using the modi-
fied meta-loss function LCM . The parameters of the optimizer and
classifier, ϕ and φ, are jointly optimized via

ϕ̂, φ̂ = argmin
ϕ,φ

ED[ LCM ( mφ, gϕ,L(hθ, · · · ) ) ]. (8)

During joint training, classification feedback is used to adjust the pa-
rameters of the optimizer, improving its ability to generate outputs
that aid in classification. At the same time, the classifier learns to op-
erate on AF outputs. This builds upon the pretrained classifier setup
by producing a custom-trained classifier that can better leverage the
AF. To speed up training, we can initialize ϕ and φ with pretrained
weights. It is also possible to improve performance by allowing mφ

to use information beyond the outputs of hθ .



4. EXPERIMENTAL DESIGN

The goal of our setup is to demonstrate that CT-Meta-AF strikes
the right balance between flexibility and structure, enabling high-
performance while still being a direct replacement for existing ap-
proaches. We evaluate the performance of CT-Meta-AF on KWS
with device playback. The AEC removes own-playback from
recordings by learning the echo path, as shown in Fig. 1. For model
details, see Fig. 2. We evaluate three scenarios: one with a pre-
trained KWS, one with test-time swapped KWS, and one with a
jointly trained KWS, all implemented using Meta-AF [1]. All CT-
Meta-AFs use the classifier for training. The jointly trained KWS is
optimized end-to-end and trained simultaneously with the AEC.

4.1. AEC Configurations

To perform AEC, we fit an AF to cancel echo. At inference time,
we only assume access to the playback, u and echoic mixture,
d. The AF uses frequency-domain overlap save with a window of
K = 1024, a hop of R = 512, and B = 4 blocks. Each block
is denoted by CFilter in Fig. 2. Each AEC filters the farend u[τ ]
with estimated filter ŵ[τ ] and subtracts the result from d[τ ]. For a
review of AEC see Benesty et al. [27]. We compare our approach
to four baselines: regular Meta-AF [1], a Kalman filter AEC (Diag.
KF) [24], No-Echo, and No-AEC. We grid-search-tune Diag. KF
using KWS accuracy. No-Echo simulates running the KWS model
in a playback-free environment, while No-AEC performs no echo
cancellation and simulates deploying a KWS without AEC.

CT-Meta-AF and Meta-AF use the same higher-order architec-
ture [23] and training scheme, with the only difference being the
loss. For CT-Meta-AF, we use λ = 0.5 in (6), and for regular Meta-
AF, we use 0. We set the group size, group hop, and hidden size to
5, 2, and 48, respectively (see Fig. 2 for details). We use Adam with
a batch size of 16, a learning rate of 2 ·10−4, momentum β1 = 0.99,
and we randomize the truncation length L. Additionally, we apply
gradient clipping and reduce the learning rate by half if the validation
performance does not improve for 10 epochs, and we stop training
after 30 epochs with no improvement. For pretrained KWS experi-
ments, we train ϕ from scratch, and for joint training, we initialize
with the best pretrained ϕ. When joint training with Diag. KF or
Meta-AF we do not update the pretrained ϕ and just train the KWS.
Each model has 32K complex parameters and trains on one GPU.

4.2. KWS Configurations

We set up KWS as a multi-class classification task, where the key-
word s belongs to a single class c. We base our KWS on the model
proposed by Cornell et al. [20]. Our version uses 40 log-mel-filter-
bank inputs and short-time Fourier transform with a 256 point hop
and a 512 point window. The KWS has 3 residual blocks, each with a
1×1 convolution, layer norm, ReLU, a dilated convolution with ker-
nel size 5, layer norm, ReLU, and a final 1× 1 convolution. The last
residual block is averaged across time and fed to a dense layer with
softmax to predict the class distribution. See Fig. 2. We use a binary
cross-entropy loss and train the KWS for 50 epochs with a batch size
of 128, a learning rate of 10−3, and use the best checkpoint based on
validation performance. We pretrain on a dataset without playback.
For joint training, due to limited GPU capacity, we use a batchsize
of 16, learning rate of 10−4, β1 = .9, reduce the learning rate by
half after 10 epochs with no improvement, and stop training after
50 epochs with no improvement. All KWS models have ≈ 300K
parameters and use ≈ 20MFLOPs per second.

Fig. 2: Detailed view of the AEC, Optimizer, and KWS. The AEC
preprocesses the KWS inputs and the optimizer controls the AEC
parameters. At test time, only the AEC parameters change

4.3. Dataset & Metrics

We use synthetic playback during training and evaluate our models
using both synthetic and real playback data from the Microsoft AEC
Challenge [22] and keywords from the Google Speech Commands
V2 dataset [21], sampled at 16KHz. During training, we trim play-
back to 3 seconds, randomly mix playback with keywords, zero-pad
keywords as needed, apply a random shift, and set the signal-to-echo
ratio (SER) uniformly at random between −25 dB and 0 dB. Each
keyword is used once. To test, we use playback trimmed to either
4 or 12 seconds. We evaluate three datasets: a 35-class dataset and
two smaller datasets with 10 and 2 classes, respectively. The smaller
datasets contain approximately one-third and one-tenth of the full
dataset. We always use the same folds and never mix across folds.

To evaluate performance, we use macro and micro averaged F1,
where higher is better. The goal is to reflect the class imbalance in
the KWS Dataset. We display results as macro F1 (micro F1).

5. RESULTS & DISCUSSION

Here, we investigate the effect of classification training for Meta-
AF on AEC with a downstream KWS. This task simulates a device
attempting to classify a spoken keyword while emitting playback.
We show results for zero playback (No-Echo), no cancellation (No-
AEC), Diag. KF, Meta-AF based AEC without classification train-
ing (Meta-AEC), and Meta-AF based AEC with classification train-
ing (CT-Meta-AEC). The Diag. KF and Meta-AEC baselines are
state-of-the-art traditional and data-driven approaches. All models
are trained on synthetic playback with challenging SERs distributed
uniformly at random between −25 dB and 0 dB, and real playback
is only used for evaluation. We use an off-the-shelf KWS that is not
customized for AEC in sections 5.1 and 5.2 but do experiment with
retraining the KWS in section 5.3. We evaluate longer playback and
compute statistical significance for select models. Across experi-
ments, CT-Meta-AF proved highly stable and required no additional
tuning, making it a drop-in replacement for prior approaches.



5.1. Pretrained KWS

First, we test the effectiveness of classification training as described
in 3.2. In Table 1, all AEC models share a frozen KWS model pre-
trained on keywords without playback. This setup mimics using an
off-the-shelf KWS without retraining but with access to your own
dataset, a common real-world setup. For CT-Meta-AEC training,
we use λ = 0.5 when computing LCM . The F1 degradation from
No-Echo to No-AEC shows the importance of AEC.

In Table 1, CT-Meta-AEC significantly outperforms its signal-
level Diag. KF and Meta-AEC counterparts, as indicated by bet-
ter F1 scores. In synthetic playback (left column), CT-Meta-AEC
improves over Meta-AEC by some .165 F1. This gap persists in
real playback, where CT-Meta-AEC is the top performing model by
.091 F1. Interestingly, CT-Meta-AEC achieves a 5.80 dB reduction
in echo, while regular Meta-AF attains a 9.57 dB reduction. This
observation underscores the limitations of signal-level metrics as
effective descriptors of downstream performance, especially in the
context of nonlinear processing methods such as DNN-based KWS.
Classification-based training effectively addresses this discrepancy
and optimizes downstream performance. In a secondary evaluation
with 12-second signals, CT-Meta-AEC outperforms Meta-AEC by
0.279 F1 in synthetic playback and 0.119 F1 in real playback.

5.2. Specialization and Sensitivity

Next, we study the specialization capabilities of CT-Meta-AEC in
different KWS setups. We use the approach from 3.2 to train three
CT-Meta-AEC models: CT-Meta-AEC-35, CT-Meta-AEC-10, and
CT-Meta-AEC-2, corresponding to datasets with 35, 10, and 2 key-
word classes, respectively. We assess the performance of each CT-
Meta-AEC model on all three datasets, but always use a downstream
KWS model specifically trained on a matching keyword setup. Ta-
ble 2 presents the results of our experiments on synthetic playback
scenarios, where each row corresponds to a distinct AEC model and
each column represents a unique test-time KWS configuration. The
first row displays our Meta-AEC baseline. Table entries on the diag-
onal show matched train/test setups.

In all columns of Table 2, CT-Meta-AEC with a matching KWS
performs best. This demonstrates that CT-Meta-AEC is learning a
specialized optimizer (the diagonal) which outperforms both gener-
alist optimizer (top row) and optimizers trained on different mod-
els (off diagonal). Notably, results above the diagonal show that spe-
cialization can yield superior results even in the presence of limited
training data. Specifically, Meta-AEC and CT-Meta-AEC-35, which
are trained with three times more data than CT-Meta-AEC-10, are
surpassed by the latter on 10 class KWS. This suggests that clas-
sification training is a data-efficient approach for improving perfor-
mance on downstream tasks. The results from mismatched train/test
setups show that CT-Meta-AECs are good at related tasks, and usu-
ally still outperform Meta-AEC.

5.3. Jointly Trained KWS

We investigate joint training of the AEC and KWS to simulate hav-
ing sufficient data for training a complete system, without oracle
signal-level supervision. Both the AEC and KWS models undergo
joint training, following the approach in 3.3.The KWS models un-
dergo a pre-training phase on scenes devoid of playback, followed
by fine-tuning using the output of their corresponding AEC models.
This represents a significant departure from the approach outlined
in 3.2, where KWS models were trained without consideration for

Model Synthetic Playback Real Playback
No-Echo .928 (.935) .931 (.936)
No-AEC .087 (.098) .102 (.117)
Diag. KF .196 (.208) .165 (.180)

Meta-AEC .335 (.340) .226 (.236)
CT-Meta-AEC .500 (.508) .317 (.326)

Table 1: F1 Macro (F1 Micro) with a pretrained KWS and SER
∈ [−25, 0] dB. No-AEC and No-Echo are lower/upper bounds.

Model 35 Class 10 Class 2 Class
Meta-AEC .335 (.340) .476 (.465) .751 (.754)

CT-Meta-AEC-35 .500 (.508) .513 (.483) .786 (.788)
CT-Meta-AEC-10 .344 (.348) .533 (.529) .781 (.781)
CT-Meta-AEC-2 .274 (.281) .413 (.400) .802 (.802)

Table 2: Specialization of classification-trained Meta-AEC with per-
formance shown as F1 Macro (F1 Micro). A different model with
different keywords is swapped in at test time. SER ∈ [−25, 0] dB.

Model Synthetic Playback Real Playback
No-Echo .922 (.928) .931 (.936)
No-AEC .609 (.619) .583 (.593)
Diag. KF .778 (.781) .690 (.698)

Meta-AEC* .870 (.876) .746 (.754)
JCT-Meta-AEC* .871 (.877) .754 (.762)

Table 3: F1 Macro (F1 Micro) with a jointly trained KWS and SER
∈ [−25, 0] dB. No-AEC and No-Echo are lower/upper bounds. An
asterix denotes that we averaged three trials.

echo presence. We call this approach JCT-Meta-AEC. For statistical
robustness, we ran three separate trials of the Meta models.

In Table 3, we find that the training scheme from 3.3 im-
proves performance. JCT-Meta-AEC outperforms Meta-AEC by
.008 F1 (p-value .01) in real playback scenarios, underscoring the
efficacy of classification training for real-world performance. While
JCT-Meta-AEC outperforms Meta-AEC on synthetic data, the im-
provement is not significant. However, on the longer 12-second test-
set, JCT-Meta-AEC beats Meta-AEC by a margin of 0.057 (p-value
.0005). Of note, we did not encounter any training stability issues.

6. CONCLUSION

We proposed a simple yet effective approach for improving the per-
formance of downstream classification tasks by incorporating clas-
sifier feedback into learned adaptive filter update rules. Our ap-
proach, classification-trained meta-adaptive filtering (CT-Meta-AF)
enables end-to-end training without oracle single-level supervision.
We evaluated CT-Meta-AF on echo cancellation and keyword spot-
ting and observed consistent performance gains across synthetic and
real playback, multiple keyword configurations, and both pre and
jointly trained keyword models. CT-Meta-AF yields performance
improvements without additional inference costs or manual tuning.
We believe our approach has the potential to improve many adaptive
filter pipelines, thanks to it’s plug-and-play design and promising
real-world performance.
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